
RD-Ri45 626 A GENERALIZED SOLUTION TO R CLASS OF PRINTED CIRCUIT 1/2
AINTENNAS..(U) CALIFORNIA UNIV LOS ANGELES INTEGRATED
ELECTROMAGNETICS LAB P B KATEHI-TSEREGOUNIS 15 JUN 94

UNCLASSIFIED UCLR-ENG-84-14 DRAG29-83-K-8867 F/G 9/5 NL

mhhmhmhmhmhhhl
I flflflffl.flfllfllf
mhmhhhhhmhhl

I Ihh|h|h/h/hEE
I flfflfl lflffllfllf|f
lE-EEE|IEEEEE



132 2-t

11111125 ILA4  flj

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A



AAD-A14%1 &82S

"A 6eneralized Solution to a Class of Integrated Electromagnetics Lahor,-ritcrv

Printed Circuit Antennas" Re'port No. 14
UCLA ENG-84-14

BY: Pisti B. Katehi-Tseregounis June 15, 1984

S- ''sored by Research Contracts: -

L..Army Contract DAAG 29-83-K--0067 This i'*

U.S. Navy Contract N00014-79-C0856 Mod. P0005 ior pt, ir I , ,

'~SEP 1 1 ~8



* ' UNCLASSIFIED
SCu1ITY CLASSSVCATOm Of T1"1! WaGE lMef D&aO En",eg

REPORT DOCMENTATION PAGE READ nWSTRUCTIONS, .. BEFORE COMPLETV4G FRM u

.PONT "Uwte gOVT ACCESSION NO 9. AECIP011MV* CAT&ALOG NuMND

-Report No. 14 AD .. _ __ _ __ _

A 4. TITLE (MINFU649889) TYPE OF REPORT PEIOD coveCQgO

"A Generalized Solution to a Class of Printed
Circuit Antennas" 0 pmoWNG 050. REPOT wMusto

UCLA-ENG-84-14
F *ITNORt(,) G. CO*TIACT ON GRBANT NMUUSEP1e

P. B. Katehi-Tseregounis

9. PEaILOMIN OUOAMIZAT ON "ME &No ADOESS 0O. PROGRAM CLIeNCT. PROJECT. TAK¢
Electrical Engineering Department Alta a WORK UNIT•ou NuNe
UCLA
7732 Boelter Hall
Los Angeles, CA 90024

It. CONYSOLLIOO OFFICE NAME AND ADDRESS M. REPORT DATE
U. S. Arew Research Office June 15, 1984
Post Office Box 12211 IS. muusEN or PAGES

Research Triangle Park, NC 27709 1 "ll_
14. UONITORING AGENCY NIAM E AOOftC5ES6(f ifDeiwE Im C'k.WlftO Offie) IS. SECURITy CLA.L (of fle .mi)

U.S. Army U.S. Navy UnclasIsified
Research Triangle Park Naval Weapons Center 50,. o SIICATIOli/0O00GRAMN
North Carolina 27709 China Lake .CA 5CSOULw o

IS ISTRIOuTION STATEMENT (of able aftpe)

Approved for public release; distribution unlimited.

17. eISTRIUTiON ST ATEM' e el..D e.wuI aneu. m faice l ". dif en ut.ui m RpeN)

NA

I. "PPLE1ItUTANY NOTES

The view, opinions, and/or findings contained in this report are those of the
euthor(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

is. KEY KCOI (Centfime 0M "weO e edie Of U 0NS ow 16"cOIW atI p Owe, UmPOi )

is disser:a-tio- deals'with te theory and design ot antennas excited by a microstri
ransmission line or by a gap generator. The antennas and the strip transmission lir
y be embedded inside or printed on the substrate. A theoretical approach is imple-
nted which accounts accurately for the physical effects involved including surface
aves. The Green's function has been obtained by synthesizing the fields of Hertz14
ipoles which are oriented in arbitrary directions and which are printed on or embed d
n the substrate. The method of solution is based on solving the Pocklington integr
*quation by employing the method of moments with proper choice of expansion and test g

,- - nJ r-nt effectively by considerintee ,,.., q1LOQj Ut

ago 31 t M . .

sa6CSNmTY CL A"aProcAWin OP Tugs VA"E mb oe nf



UNIVERSITY OF CALIFORNIA

Los Angeles

A Generalized Solution to a

Class of Printed Circuit Antennas

L

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy in

Engineering

By

Pisti B. Katehi-Tseregounis _

Ac_ s'" on For

1984

S I



9Copyright by

Pisti B. Xatehi-Tseregounis

1984



The dissertation of Pisti B. Katehi-Tseregounis is

approved.

Nicolaos G. Alexopoulos
Committee Chair

Robert S. Elliott

Nathaniel Grossman

Reiner Stenzel

University of California, Los Angeles

1984



This dissertation is dedicated to my

husband, Spyros, and my son, Iraklis.



TABLE OF CONTENTS

List of Figures . . . . . . . . . . . . . . . . . . . .viii
Abstract . . . . . . . . . . . . . . . . . . . . . . . .xiv

CHAPTER I INTRODUCTION ............. 1

CHAPTER 2 THE GREEN'S FUNCTION AND
POCKLINGTON'S INTEGRAL EQUATION . . . 7

2-1 Derivation of the Green's
Function. . . . . . . . . . . . . . . 7

2-2 Pocklington's Integral Equation . . . 13

CHAPTER 3 TRANSFORMATION OF THE INTEGRAL
EQUATION INTO A MATRIX EQUATION . . . 18

3-1 Method of Moments . . . . . . . . . . 18

3-2 Galerkin's Method . . . . . . . . . . 20

3-3 Impedance Matrix Element
Formation . . . . . . . . . . . . . . 22

CHAPTER 4 EVALUATION OF THE SOMMERFELD
TYPE INTEGRALS. . . . . . . * . ... 30

4-1 Singular Points and Related
Surface Waves . . . . . . . . . . . . 31

4-2 Numerical Integration XE[0,A] . . . . 33

4-3 Evaluation of the Tail
Contribution. . . . . . . . . . . . . 36

CHAPTER 5 NUMERICAL RESULTS FOR SELF AND
INPUT IMPEDANCE OF PRINTED
STRIP DIPOLES . . . . . . . . . . . . 44

5-1 A Printed Strip Dipole Excited by
a Microstrip Transmission Line
Embedded in the Dielectric. . . . . . 44

S-lA. Self Impedance Evaluation. . . 47

5-lB. Dipole Length and
Overlap Variation. . . . . . . 51

iv



TkBLE OF CONTENTS (CONT'D)

S-IC. Dipole Length and
Offset Variation . . . . . . . 53

5-1D. Dipole Length and Substrate
Thickness Variation. . . . . . 55

5-lE. Comparison with
Experimental Results . . . . . 57

5-2 Strip Dipoles Excited by a Gap
Generator . . . . . . . . . . . . . . 61

5-2A. One Dipole Printed on or
Embedded in the Substrate. . . 62

S-2B. One Embedded Strip Dipole
Excited by a Gap Generator
in the Presence of a Printed
Parasitic Dipole . . . . . . . 69

S-2C. An Embedded Strip Dipole
Excited by a Gap Generator
in the Presence of TwoParasitic Dipoles. . . . . . . 72

CHAPTER 6. RADIATION PATTERN OF PRINTED
STRIP DIPOLES . . . . . . . . . . . . 80

6-1. Formulation of the Equations for
the Far-Zone Field. . . . . . . . . . 80-

6-2. Effect of Substrate Thickness and
Permittivity on the Radiation
Pattern . . . . . . . . . . . . . . . 83

6-2A. Number of Lobes. . . . . . . . 83

6-2B. Positions of the Nulls . . . . 84

6-3 Radiation along the Horizon ..... 89

BIBLIOGRAPHY . . . . . . . . . . ......... . 96

APPENDIX A FORMULATION OF POCKLINGTON'S
INTEGRAL EQUATION (2.35) IN
THE FORM GIVEN BY (2.37). . . . . . .101

V



TABLE OF CONTENTS (CONT'D)

APPENDIX B EVALUATION OF THE SPACE INTEGRALS
IN THE INTERVAL Xc[O,A] .. . . 104

APPENDIX C FORMULATION OF THE INTEGRAL
(4.20) FOR THE TAIL CONTRIBUTION. . .107

APPENDIX D FAR-ZONE ELECTRIC FIELD FOR A
PRINTED STRIP DIPOLE. . . . . . . . .113

vi



LIST OF FIGURES

Figure I Different Excitation Mechanisms
for Printed Antennas. . . . . . . . . . . 4

Figure 2.1 HED's Printed on and Embedded
in a Grounded Dielectric Slab . . . . . . 8

Figure 2.2 Strip Dipole Excited by a
Microstrip Transmission Line. . . . . . . 14

Figure 2.3 Strip Dipole Excited by a
Gap Generator . . . . . . . . . . . . . . 15

Figure 3.1 Piecewise-Sinusoidal Currents on the
Printed Dipole and the Embedded
MJi:rostrip Line ...... . . . . . . .24

Figure 3.2 Current Distribution on the Dipole
in the Transverse Direction . . . . . . . 25

Figure 3.3 Printed Strip Dipole EM Coupled to an
Embedded Microstrip Line which is
Fed by a Coaxial T.L. . . . . . . . . . . 28

Figure 4.1 Path of Integration .............. 32

Figure 5.1 Side and Top View of a Printed Strip
Dipole Excited by a Transmission
Line Embedded in the Dielectric . . . . . 45

Figure 5.2 Cross Section of a Printed Strip
Dipole Excited by a Transmission
Line Embedded in the Dielectric . . . . . 46

Figure 5.3 Current Amplitude on the Strip
Dipole and Microstrip Transmission
Line . . . . . . . . . . . . . . . . . . . 48

Figure 5.4 Zs/Z 0 as a Function of kovp and L1 ... 52

Figure 5.5 Zs/Z as a Function of the Offset
and L .. . .. . . . . . . . . . . 54

Figure 5.6 Zs/Z as a Function of bs and L1 .... 56

Figure 5.7 Current Amplitude on the Strip
Dipole and Transmission Line. . . . . . . 58

Figure 5.8 Printed Strip Dipole with Round
Corners EM Coupled to a Microstrip
Transmission Line . . . . . . . . . . . . 59

vii



LIST OF FIGURES (CONT'D)

Figure 5.9 Comparison of Theoretical to
Experimental Results. . . . . . . . . . . 60

Figure 5.10 The Input Impedance of a Printed
Strip Dipole Excited by Voltage
Gap Generator . . . . . . . . . . . . . . 63

Figure 5.11 Real Part of the Input Impedance
of a Printed Strip Dipole with cr = 2.45
h - 0.2 X0 and t1 - 0.0001 r ...... 64

Figure 5.12 Imaginary Part of the Input Impedance
of a Printed Strip Dipole with c r = 2.45
h - 0.2 A 0 and t = 0.0001 A . . . . . . 65

Figure 5.13 Current Distribution on a Printed
Strip Dipole with Cr - 2.45, h = 0.2 Xo"
w - 0.01 A0  and t1  . 0.0001 A0 0

(a) L11A * 0.62

(b) L /A - 0.346

(c) L1/X0  = 0.248. . . . . . . . . . 67

Figure 5.14 Resonant Length and Resonant Resistance
of a Strip Dipole as Functions of the
Embedding Distance.cr w 2.53,
h - 0.065 Ao, t- = 0.0001 o and
w = 0.05 X0  . . . . .. . . . . . . . 68

Figure 5.15 Embedded Strip Dipole Excited by a
Voltage Gap Generator in the Presence
of a Parasitic. . . . . . . . . . . . . . 70

Figure 5.16 Resonant Length and Resonant Resistance
of the Excited Dipole as Functions of
its Embedding Distance.Cr = 2.35,
h a 0.065 X 0, w = 0.05 A 0, ko - 23%
and t1 -t 2 . 0.0001 A0 . .0.... . 71

Figure 5.17 Resonant Length and Resonant Resistance
of the Excited Dipole as Functions of
the Substrate Thickness. Cr - 2.35,
h - bs  0.1 Ao, w - 0.05X - 231
and t1 a t 0.0001 X " "  p . 73

viii



LIST OF FIGURES (CONT'D)

Figure S.18 Resonant Length and Resonant Resis-
tance of the Excited Dipole as
Functions of the Substrate Thickness.

r 2 2.35, h-bs - 0.025 A , w - 0.05 A,
ovp and w t 2 -°0.0001x. 74

Figure 5.19 Embedded Strip Dipole Excited by a
Voltage Generator in the Presence
of Two Parasitics. One Embedded in
the Dielectric and the other Printed
on the Interface. . . . . . . . . . . . . 75

Figure 5.20 Input Impedance of the Exciter
as a Function of its length for

2.35, h - 0.065 X, b a 0.041

w t t0.05 to t 0 t - 0.0001 X 0
and 6 A . . . . . . . . . . . . . 77

Figure 5.21 Input Impedance of the Exciter as
a Function of its Length for cr 2.35,
h - 0.065 X , b_ 0.041 o, r

0.05 A o' 1 2 3 a 0.0001 X . 78

Figure 5.22 Resonant Length and Resonant Resistance
of the Exciter as a Function of
6. a a 2.3S, h - 0.065 A
bs r 0.041 Ao, w - 0.05
t 2  t 3 a 0.0001 X° 0 .. . .. 79

Figure 6.1 Printed Strip Dipole Excited by a
Microstrip Transmission Line Embedded
in the Dielectric. . . . .. . . . . . .81

Figure 6.2 Printed Dipole Radiation Patterns.
-E-plane, ---H-plane_4
Cr a 2.35, w - - 10A 0

(a) h h op t

(b) h - 0.2 A . . . . . . . . . . . . 85 _

Figure 6.3 Printed Dipole Radiation Patterns.
-E-plane, ---H-plane4
Cr - 2.3S, w - t 10 X0

(a) h - 0.975 Xo

(b) h - 1.05 Xo  . .. . . .. . .. . 86

ix



LIST OF FIGURES (CONT'D)

Figure 6.4 Printed Dipole Radiation Patterns
-E-plane, ---H-plane
h - 0.1016 X0o w = t a 10"4 x

00(a) Cr - 2

(b) cr 10. . . . . . . . . . . . . . 87

Figure 6.5 Printed Dipole Radiation Patterns
-- E-plane, ---H-plane
h - 0.1016 X 0 , w = t a 10 4

(a) Cr - 35

(b) cr m 25. . . . . . . . . . . . . . 88

Figure 6.6 Dielectric Constant vs. Substrate
Thickness for TE and TM Wave
contribution to the H and E-plane
Radiation Patterns. . . . . . . . . . . . 92

Figure 6.7 H-plane Radiation Pattern of a
Printed Strip Dipole with cr = 2.1,
h - 0.235 X and w = t - 10-4X . . . 93

Figure 6.8 H-plane Radiation Pattern of a Printed
Strip Dipole with c - 2.286,
h - 0.661 X and w t 10 4 X . . . . . 94

Figure 6.9 E-plane Radiation Pattern of a
Printed Strip Dipole with Er a 4,
h = 0.285 X and w - t 10- 4X ..... 95

x



ACKNOWLEDGMENTS

I wish to express my sincere gratitude to Professor-
N. G. Alexopoulos for proposing the topic, for his guidance
and encouragement which greatly aided me to complete this
research.

I also wish to thank Professor R. S. Elliott for his
interest, guidance, and many helpful suggestions as well
as Professor N. Grossman for his assistance on this
research.

I owe a special expression of appreciation to my
husband who has been a constant source of encouragement
and to my parents for their continuous moral and material
support.

I would also like to thank Zonta International for
partially supporting my studies.

Finally, I wish to thank Ms. Irene C. Andreadis for
typing this manuscript.

xi



VITA

January 29, 1954--Born, Athens, Greece

1977--B.S., National Technical University of Athens, Greece

1977-1979--Field Work, Athens, Greece, under the Naval
Research Laboratory

1979-1981--M.S., University of California, Los Angeles

1981-1984--Ph.D., University of California, Los Angeles

PUBLICATIONS

Marcopoulos, D., Katehi P. Directive Microstrip Antennas
1977 7th European Microwave.

Conference, Proceedings,
Copenhagen, Denmark.

Uzunoglu, N.K., Katehi, P.B. Coupled Microstrip Disc
1980 Resonators.

IEEE Trans. on MTT, Vol. 28,
No. 2.

Rana, I.E., Alexopoulos, N.G. Theory of Microstrip Yagi-Uda
Katehi, P.B. Arrays.

1981 Radio Science, Vol. 16,
Nov.-Dec.

Katehi, P.B., Alexopoulos, On the Effect of Substrate
N.G. Thickness and Permittivity

1983 on Printed Dipole Properties.
IEEE Trans. on AP-S, Vol. 31,
No. 1, January.

Alexopoulos, N.G., Katehi, Substrate Optimization for
P.B., Rutledge, D.B. Integrated Circuit Antennas.

1983 IEEE Trans. on MTT, Vol. 31,
No. 7, July.

xii

4 .



Katehi, P.B., Alexopoulos, Real Axis Integration of
N.G. Sommerfeld Integrals with

1983 Application to Printed Circuit --
Antennas.
Journal of Math. Physics, 24(3),
March.

xii



ABSTRACT OF THE DISSERTATION

A Generalized Solution to a Class

of Printed Circuit Antennas

By

Pisti B. Katehi-Tseregounis

Doctor of Philosophy in Engineering

University of California, Los Angeles, 1984

Professor Nicolaos G. Alexopoulos, Chair

This dissertation deals with the theory and design of

antennas excited either by a microstrip transmission line or

by a gap generator. The antennas and the strip transmission

line may be embedded inside or printed on the substrate. A

theoretical approach is implemented which accounts accur-

ately for the physical effects involved including surface

waves. The Green's function has been obtained by synthesiz-

ing the fields of Hertzian dipoles which are oriented in

arbitrary directions and which are printed on or embedded in

the substrate. The method of solution is based on solving

the Pocklington integral equation by employing the method of

moments with proper choice of expansion and testing func-

tions. The excitation mechanism is taken into account

effectively by considering it as part of the antenna. The

current distribution is obtained both on the transmission

line and the printed circuit antennas by matrix inversion.

The method accounts for conductor thickness and for

xiv



arbitrary substrate parameters.

As an example, printed strip dipoles excited by a

transmission line embedded in the substrate or by a voltage

gap generator are considered. Current distribution, self

impedance and reflection coefficient for the case of the

transmission line excitation as well as input impedance,

resonant length, resonant resistance and radiation patterns

for the case of the gap voltage excitation are obtained

for a variety of antenna arrangements. A serious amount of

effort is also being placed in evaluating the importance of

higher order surface wave modes which are determined by the

relative dielectric constant and the thickness of the sub-

strate. Comparison of the theoretical results to experimental

data for the case of an electromagnetically coupled printed

strip dipole toa strip transmission line shows excellent

agreement.
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CHAPTER 1

INTRODUCTION

Integrated or printed circuit antennas are a natural

evolution of integrated circuit components and are finding

increased use in the microwave, millimeter and far infrared

frequency ranges. Therefore, the development of antennas

which are amenable to integration with other printed circuit

elements is of significant technological importance.

The microstrip antenna concept dates back about 30

years to work in the United States by Deschamps [1] and in

France by Gutton and Baissinot [2). Shortly thereafter,

Lewin [31 investigated radiation from stripline discontinui-

ties. Additional studies were undertaken in the late 1960's

by Kaloi [541 who studied basic rectangular and square con-

figurations (patches). However, the inherent advantages of

antenna elements (conformality to a given surface, light

weight, negligible volume, inexpensiveness), were not put to

widespread practice until the 1970's [4]-[21]. The environ-

mental and technological constraints having been resolved,

the task remained to develop analytical methods which would

provide accurate design criteria. Mathematical modeling of

the basic microstrip radiator was carried out initially

either by the application of transmission line analogies to

simple rectangular patches fed at the center of a radiating

wall, or by an open resonator model [91-[211. The former

approach gives a heuristic explanation of the radiation

1
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properties of the antenna, while the latter provides a more

accurate prediction of the antenna characteristics. However, -

both models apply mainly to the dominant resonator model and

their accuracy is questionable for higher order modes,

especially because they do not account for the excitation

of surface waves.

Surface waves have an important effect on the printed

circuit antenna current distribution, as well as input

impedance, resonant length, bandwidth and efficiency [341-

[371. In addition, since surface waves are cylindrical

waves in nature, they decay only as the inverse square root

of the distance from their source and for this reason they

can be significant in mutual impedance computations [26],

an important parameter in phased array design. It has been

shown that, regardless of the substrate thickness and

dielectric permittivity, the dominant surface wave mode is

always excited. The power propagating in this mode is a

function of the characteristics of the substrate. As more

energy is trapped in the substrate, the microstrip antenna

-ecomes less efficient [351. In many applications, such as

in the millimeter or far infrared region [291-[311, today's

technology provides substrates which are several wavelengths

thick. This permits the propagation of many TM and TE waves

In the,substrate, further complicating the design. These

modes can also cause impairment of efficiency. It becomes

P _- evident from this discussion that a theoretical approach

2



II

should be implemented which accounts accurately for all the

aphysical effects involved including surface waves. Such an

approach excludes either of the previously mentioned tech-

niques and relies on treating the microstrip element as an

antenna rather than a transmission line section or as a

resonator.

A microstrip antenna is usually excited either by the

inner conductor of a coaxial transmission line [39]

(Fig. la) or by a microstrip transmission line [411-143]

printed or embedded in the substrate (Fig. lb). From these

two ways of excitation, the latter has demonstrated that a

microstrip antenna electromagnetically (EM) coupled to a

microstrip line makes a desirable element for one- and two-

dimensional antenna arrays.

Recently, Oltman and Huebner [40], and later, Stern

and Elliott [411-[42] experimentally studied this radiator

as an element as well as part of a two-dimensional array and

they described a design procedure with the objectives of an

input match and a desired radiation pattern.

In this present work, strip dipoles printed or embedded

in the substrate excited either by a gap generator or a

microstrip transmission line are considered. The thickness

of the strips is considered finite and the widths of the

dipole and transmission line are assumed to be much smaller

than the wavelength so that the transverse components of

the current give a second order effect. The current distri-

3
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bution on the antenna is obtained first by solving a two-

dimensional Pocklington's Integral Equation [38]. The

Green's function in this case can be obtained by synthesiz-

ing the fields of Hertzian dipoles which are oriented in

arbitrary directions and which are printed or embedded in

the substrate, therefore accounting properly for all the

boundary conditions pertinent to the problem.

An analytical solution of the two-dimensional

Pocklington's integral equation is precluded due to the

immense complexity of the problem. The use of numerical

techniques which discretize the integral equation and

obtain the current distribution by matrix inversion is

necessary. A numerical method which has found widespread

and successful use for the solution of Pocklington type

integral equations is the Method of Moments [25]-[28]. For

the present application, the Green's function relevant to

the problem is given by Sommerfeld-type integrals which

require special integration techniques when field and source

point coincide 138].

For the case of the antenna excited by a voltage gap

generator, the input impedance is defined as the ratio of

the applied voltage to the input current and resonant length,

resonant resistance, bandwidth and efficiency are evaluated

as function of the substrate characteristics. In the case

of a dipole EM coupled to a microstrip line, transmission

line (T.L.) theory is used to derive a form for the self-



impedance. The application of T.L. theory becomes possible

by virtue the fact that the distance of the feeding line

from the ground has been kept always very small compared to

wavelength in the dielectric so that most of the contribu-

tion for the electric field under the microstrip line

results from a dominant TEM-like mode. This leads to a

design procedure which, for a given substrate, permits

determination of the length of the dipole, overlap and off-

set so that a desired input match is achieved.

A serious amount of effort has also been invested in

determining the effect of the substrate thickness and

relative permittivity on the radiation properties of printed

circuit dipoles (PCD's). A trade-off between substrate

thickness and resonant input impedance, bandwidth and

radiation efficiency is presented for PTFE glass, quartz

and GaAs substrates. The E- and H-plane normalized power

patterns are also examined as a function of cr and h, and

it is shown that even for thin substrates, multiple-beam

radiation can result for certain values of Er through the

excitation of surface waves.

Throughout this work, the cost of the computer programs

was keptvery low with the application of special analytical

and numerical techniques for the evaluation of the elements

of the, impedance matrix. These techniques will be described

since they are quite general and apply to any kind of

printed antenna.

6



CHAPTER 2

THE GREEN'S FUNCTION AND POCKLINGTON'S

INTEGRAL EQUATION

2-1. Derivation of the Green's Function

This chapter contains a development of the Green's

Function pertinent to the problem of strip or patch antennas

printed on and/or embedded in a grounded dielectric sub-

strate of thickness h and relative dielectric constant cr .

In order to formulate the Green's function, two ele-

mentary horizontal electric dipoles (HED's) are considered

to be at the positions (xi, yj, 0) and (xj, yj, -bs ) as

shown in Figure 2.1. The assumed time dependence is eJ~t

and it is suppressed throughout the dissertation. The

electromagnetic field at any point due to these two dipoles

is the superposition of the fields arising from each one

separately

1 2(21
(i - 1,2)

1 2

with (jlVl) and (n2, t2) the electromagnetic fields in

medium (1) and (2) respectively. Maxwell's equations now

take the following form:

x - + Jii (2.3)

Ix 1ia-jwuPi (2.4)

- 0 (2.5)
V

7
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~1

. -(2.6)

-i -- w (2.7)

V Ci

Ci (2.8)Cre o  i-2

where the superscript i indicates the medium with the sub-

script v indicating the source. The potential function

1 i (2.9)
V 0 V V

is now introduced. I' will turn out to be the-vector
V

potential function in medium (i) due to source (v). A

substitution of (2.9) into the curl equation for r gives

the result

IxCfl-3W1) - 0 (2.10)
V V

Since lx(I ) - 0, it follows that

11.Jj- (2.11)i

with 01 the scalar potential in medium (i) due to the sourceVi an i  nb bandb
(v). The relationship between *v and A can be obtained by

substituting (2.9) and (2.11) into (2.3), i.e.

-X, 1 -1 - v-xi I o- 01+ jcoc Itv v vvi~ O

(2.12)

If one considers the Lorentz condition

iv jioi (2.13)

9



equation (2.12) reduces to

where

V V

The Lorentz condition enables one to write the electromag-

netic field in medium (i) due to source (v), since it

follows that
~1 2 i A

{k A' + "-A"{} (2.15)
V JW~iV)J0  1 V V

= (2.16)
V V

where

SIW2CrCoo i: 21

For the case of infinitesimally small dipole sources

oriented along the x or y axis the solution to the inhomo-

geneous equation (2.14), when that solution also satisfies

the specified boundary conditions, is called Green's

function and is given by

2, 2.i 3W1o(V + k)Fl 6( r)i, (2.17)

For an elementary dipole of arbitrary orientation, this

vector function becomes dyadic and is the solution of the

following inhomogeneous equation

(V + k) * T 8(- ) (2.18)
1AA AA A

where I is the unit dyadic or idemfactor given by Xx + yy+ z.

10
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Considering all the equations above, one can prove [45] that

for the case of a general current 3V the electric field is

given by

E (r) [k? TI + W1 F ( / (')dT'
V f IV 'I

V (2.19)

with the integration extended over the volume which contains

all the current sources. One can also deal directly with

the equation

xx k i -jWVo (2.20)

V 1v o0v

which the electric field satisfies. In this case, the

the dyadic Green's function can be defined as that solution

to the inhomogeneous equation

WXV - O = _jwpo16(r r) (2.21)
V IlV 0 V

which also satisfies the specified boundary conditions.

Using equations (2.20) and (2.21), one can prove [45], [46]

that

T r r i~~ rr (rt)dT' (2.22)

from equations (2.20) and (2.22) the following relation is

true for every TcV:
a .i. (k 'Tl -" (0 (+ )"" ('r)dmt

.~V I V V
v Vrcv (2.23)

11



Therefore, it can be concluded that

r(kI ) F (r/r') (2.24)
V I

Y;,rcv

For the total field, equations (2.19) and (2.22) can be

written as

c " , fv C//,) ()dT -
V-l,2 V
" v [2T + "3 ci

= f Iki F ] F(r/rI)
Vl1,2 V~ *V=I 2

V (-r ) d T '  (2.25)

The solution which satisfies equations (2.18) and the

appropriate boundary conditions in medium (i) consists of

two parts; the secondary solution which is the solution to

the corresponding homogeneous equation and the primary

solution which is the particular solution to the wave

equation. For the case of a horizontal dipole current along

the x direction ('), the dyadic function F(r/+') has the

form

F(/') F Vxx xx + FVz x zx (2.26)

where~the components Fi (r/r) Fi (r/ ') were found to bevxx Vzx

133), j371

F V 1 (r/r') =-2 (=l) L 0 (2p)e 0 il

12



•(1 - 6 i26v2 6i2 6vz[ucosh(uzV) + U osinh(uzV)]•

sinhlu(h-zv + zV6il6vl ) ]

an fl (,Cr, h) XdX (2.27)

Fand 70 --2Q...)1dcos f l1(p)e

sinh[u(h-zv + ZV6vl )

fl( )Cr ,h)

cosh[u(h-z i  Zuj 1 JJ 2dX (2.28)
f 2 (Ac ,h)

The various parameters involved in equations (2.27) and

(2.28) are defined as

u u2 k 2 11/2 , U a [A2-k2 1/2  (2.29)2 , 0  1,

P= [(x-x')2 + (y-y')2 ] 1 2  (2.30)

fl(,Cr,h) - uosinh(uh) + ucosh(uh) (2.31)

f 2 (Xcrh) - cruocosh(uh) + usinh(uh) (2.32)

The zeros of f1(XCrh) and f2 (Acr,h) lead to TE and

TM surface wave modes respectively [35], [37]-[39].

2-2 Pocklington's Integral Equation

In this work, the thickness of the metallic strips is

considered finite and the widths of the dipole and the

transmission line, Fig. (2.2) and (2.3) are assumed to be

such smaller than the wavelength in the dielectric so that

the transverse components of the current are a second order

13
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effect. If it is assumed that the current density of the

dipole is given by

V V V
v =  x(' =ivX'y, ]  (2.33)

V V

where z = 0 when v - I and z - -b s when v = 2, then the

integral equation takes the form

0 1 w dy' df ' k2 T *

v-1,2 Jw/2 0

F (/' )'Xj (t",) (2.34)

If equation (2.26) is substituted into (2.34) the expression

for the electric field takes the form

"',/2 dy' fL dx'

01,2 3f-wV/2

2 ~i 2Zp
a_____ 9 Vz

\ 1 xx x + pxpz)Jl 'Y'z' 4Ik .2Fi a x 4X' z zx-) V

a2Fi 2Fi Al{'. x~x + z x Z)J lyz~
I___ VZ3yx a

+ + Tz) x 'z V (2.35S)

From (2.35) it is observed thak the electric field consists

of three components, namely, Ex, Ey, and Ei. However, only

the E, component is needed for the application of the method

i
of Moments along the x-axis. From equation (2.35), the x

component is given by

16



1 w"/ dy'f dx'

v~ c 1,2 JWv/ 2  0

*~ ax

(2.36)

A consideration of the following relationship

aVzx aFz
3z -

(2.37)

leads to

v, dy /2 Vd
EX(Y ~ iV/2d x

IF + az (P *Fi J (xt"yzV)(.8
1 V ax z vx z V ( . 8

with Fi given by (see Appendix A)

/j-2u'0(lJl (X~-U0Z6

E Sil u 0cosh~uh)-6izusinhru~h-zi )1)

[6visinh(uh) + avsinhfu(h-z V)IJ 2.9

wher a V1 V -(2.39 )

17



CHAPTER 3

TRANSFORMATION OF THE INTEGRAL EQUATION

INTO A MATRIX EqUATION

3-1. Method of Moments

The purpose of this chapter is to present the basic

mathematical techniques for reducing functional equations to

1P matrix equations. These techniques are then applied to the

specific problem of the strip dipole printed on or embedded

in a grounded dielectric substrate and excited either by a

microstrip transmission line or by a gap generator. A

unifying principle for such techniques is found in the

general method of moments, in terms of which most specific

solutions can be interpreted.

Throughout this chapter, the width of the strip dipole

and transmission line is assumed to be small enough compared

to the wavelength in the dielectric, so that the transverse

component of the current may be assumed to be a second order

effect. It is to be emphasized that in this dissertation

the thickness of the conducting strips is finite. The

method of moments is a general procedure to solve linear

inhomogeneous equations of the type [47]1[521

L (f) - g (3.1)op

where L opis a linear operator, g is the source or excita-

tion (known~ function) and f is the current or response

(unknown function to be determined). The term deterministic



means that the solution to equation (3.1) is unique; that

is, only one f is associated with a given g. The integral

equation (2.37) for the specific problem that is studied

here can be transferred into an operator equation as

follows:

L () - E'x (3.2)

with Li given by

i "w/2 V2 i i
L 2 dy' f dx' k2Fi +x a (FVx- F z

V-l,2 JwW/12 0ax diZ
(3.3)

In addition to the above, it is necessary to define the

inner product <3,(E x)>, which is a scalar, to satisfy

the following relations in Hilbert space

E, ( x) - (E 2 ),J> (3.4)

ii*a +B(Ei x),jh>*a acMV> + O<(E1 i^),> (3.5)x x

(3.6)>0 if 3 0

where a,$ are scalars, 3xA - 0 and * denotes a complex con-

jugate.

A suitable inner product for this problem is

0

Furthermore, GV ( r / r ') - Gv r ' / r ) (v-l,2) and using equation

(2.25) it can be shown that

19



cL (J), (E' 3,- L(E x) (3.8)x x

which means that the integral operator is self-adjoint.

Consideration of equation (3.8) and of the fact that zero

excitation gives no response, it can be proved that there

exists a unique solution to functional equation (3.2) and,

i -
therefore,the inverse operator (L ) exists such that

= (Li) " (Ei X) (3.9)

In order to obtain a solution for equation (3.2) in the

form (3.9), we have to follow the procedure described

below:

1) Expand the unknown vector 3 in a series

of basis functions spanning I in the

domain of Li.

2) Determine a suitable inner product and

define a set of weighting functions.

3) Consider the inner products of these

functions with both sides of functional

equation (3.2) and transform it into a

matrix equation.

4) Solve the matrix equation for the unknown

vector 3.

3-2. Galerkin's Method

For the evaluation of the current distribution on

printed circuit antennas, a specialization of the general

method of moments is particularly convenient. At first, the

20



unknown current is expanded in a series of functions in the

domain Li as follows

(-" IV nT ( -r)  v-1,2

n nn (3.10)
ncN

where the In's are constants. The functions 3C )n are

called expansion or basis functions. For exact solutions,

(3.10) is an infinite summation while for approximate solu-

tions it is usually a finite summation. Substituting (3.10)

into (3.2) and using the linearity of Li , one.can have

' n In Li n ) r Xx  ) (3.11)

Furthermore, a set of weighting functions, or testing

functions, is chosen to be identical with the basis

functions, i.e.,

{W1c)) - {,c() ,,,, nN (3.12)
m n

and then the inner product

1 4 , L (3v~)> ci±,(E~ X> (3.13)
n m n

is formulated. This set of equations can be written in

matrix form as

[Zmn I nI

where

Z" i- , L( v)> (3.15)Zmnn

and

Iv 1 ~' 4" ~(Ei X)> (3.16)2 x

21
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Since the matrix [Zmn1 (as it will be shown in the follow-

ing chapters) is nonsingular, its inverse exists and

equation (3.14) gives

[ [Z f 1 [v1iJ (3.17)

The vector 1OV is written asn

[vT, 12 129., ,,(318)

and, therefore, the solution to equation (3.2) is given by

rt ) [ y]T n zmn 1 [V1] (3.19)

One of the main tasks in any specific problem is the choice

of the functions 3v. They should be linearly independentn
and selected so that some combination (3.10) can approximate

3(r) reasonably well. Additional factors which affect the

choice of 3v are:n
i) The desired accuracy of the solution.

ii) The ease of evaluation of the matrix elements.

iii) The size of the matrix that can be inverted.

iv) The convergence of the solution.

3-3 Impedance Matrix Element Formulation

As mentioned previously, the choice of the basis

functions is determined by many factors dictated by the pro-

blem under consideration. For the case of a printed or

embedded strip dipole electromagnetically coupled to a

microstrip transmission line or excited by a gap generator

the basis functions were chosen to he of the lorm

22



- ^J (x,)JV(y')6(zW-zv) (3.20)

n n nx y

The Jn (x') are overlapping piecewise sinusoidal functions

[38] of the form (Fig. 3.1),

sin[k(x'-xn.)] sin[k(xn+lx')I
Jnx ( x t) =Pn- sin(1et) Pn sin(ktx " -

J xx

(3.21)
with

Pn-I 1 elsewhere

(3.22)

P n :S x' <_ Xn 1

elsewhere

and

k Oki  acR (3.23)
JV(y ) gives the correct transverse variation of the
y

current density on the strips taking into account finite

conductor thickness. The expression for the function
JV(y,) is given by (Fig. 3.2)
y

iv (Yl) (3.24)
Y7772

Here, WV is the effective strip width given by WS W 26

The parameter 6V is the excess half width, and it accounts

for fringing effects due to conductor thickness [53].

Interpretation of the choice or the current density

dependence in y', indicates that the edge condition is

satisfied at y' - ±Wv/2, which is an equivalent strip of

23
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Figure 3.1

Piecewise-Sinusoidal Currents on the Printed
Dipole and the Embedded Microstrip Line
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WV

zero thickness. At y' - ±-, the current density remains

finite, as is the case for nonzero thickness conductors.

This choice of dependence in y' for the current density

yields, as will be shown, very accurate results for micro-

strip dipole resonant length.

If one substitutes (3.20) and (3.10) into (2.38), then

it can be found that the expression for the electric field

is

in f __/2 dy' 6 z,.zV)
V-1,2 n 1w /2 2

[ftx dx' (k?" k2 ) [F1 x(X+X'X) +

" i (xx~ Fi (x+x'~

FVxx nX-x',Xn)] + i2[FVz xn) ..

" F2 (x-x,,x )JI sin[ieCt.-x)] +
Vz nX

+ I[Fi (x~x',x ) Fi (x+x',x )] [6(x'+t )
vxx n vz n x

+ 6(x'-tx) - 2cos(ktx),(x' )  (3.25)

Now, the following inner produce is defined

x

44W,(E x) m mx (x Ei 60) a(Y -y )6(z-z ) (3.26)' m- 1

Equation (3.26) combined with (3.25) and (3.15) gives the

following form for the elements of the impedance matrix

26



mn [sin R") I' J-w"/2 1 2Y)

e

I~~ dxf[,I k- LVixx (x~xx' xm ) +

"*F (x-x ~ + Fl -~lx'

Vxxnx vxx(- x~n xm~

F
1  

(2 1 (xxnm) +

" F (x-x' ,x x)l + It [IFx (x x,x )]
vZx m vz 'n m

* ~zXwnxmisinEk(.tx-x)] 0 sinik(.tx-x')]

+ x[F'~ (x~x',x )x + F' (.x+x'x ,x )-
0

p(X+X',X x F - F (-x4xl 'txl
vz nm M VZn f

*sini(Il( -x)J (6(x'+t (x-
x x x

-2cos~kt,)6(x')] 
(3. 27)

with

vxx ~ ~ n x lp Sf[x+x')+(xM-xn)] +( 2Y

(3.28)

and

F '(~x,x ) 2 F2 2

(3.29)
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Figure 3.3

Printed Strip Dipole EM Coupled to an Embedded
Microstrip Line which Is Fed by a Coaxial T.L.
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A5 mentioned in previous chapters, the strip dipole is

excited either by a voltage gap generator or by a microstrip

transmission line embedded in the dielectric. In the first

case, the gap generator is considered at the feed point and

all the elements of the excitation vector become zero

except the one which Corresponds to the infinitesimally

small gap. In the case of the electromagnetically coupled

strip dipole, the problem of the excitation of the trans-

mission lint has to be resolved. In practice, the micro-

strip line is excited by the inner conductor of a grounded

coaxial line as shown in figure (3.3). Since the

theoretical analysis for such an excitation is very

difficult, other possible models were studied such as a

voltage or current generator at the end of the microstrip

or a voltage gap generator two subsections from this end.

From these models the only one that gave very good results

was the gap generator but with the condition that the length

of the microstrip line is chosen to be more than three wave-

lengths in the dielectric. This model has been used for the

derivation of the results which will be presented in follow-

ing chapters.

2.9



CHAPTER 4

EVALUATION OF THE SOMMERFELD

TYPE INTEGRALS

4-1. Singular Points and Related Surface Waves

As shown in Chapter 3, the elements of the generalized

impedance matrix are given by

Zmn f v-,2 mn {oI)

ivi V
A r h) . 1 rh dX (4.1)

wheree"n is a multiple space integral operator acting on

the zeroth order Bessel function, AiV , r h; z, zV)is a

complicated expression of transcendental functions without

singularities and f1 (,%Crh), f2 (X,crh) are given by (2.30)

and (2.31). The integral in equation (4.1) is a Sommerfeld

type [44] and the existence of essential singularities in

its integrand necessitates very careful treatment. In this

chapter, the computation of this integral will be shown

explicitly and the approximations employed will be justified

with estimation of the introduced error.

In equation (4.1), the integrand is a function of

parameter X through the radicals

u - [X2_ k 2 (4.2)

2

u M tx2-k 2  (4.3)

30



where kl, k2 are the vacuum and substrate wavenumbers

respectively. The sign of the radical u does not affect the
single value of the integrals, as the terms involving the

radicals are even functions of u. For this reason, only

the branch cut contribution by the radical uo is considered

and its direction is determined by the requirement that the

radiating field is a wave receding from the source. As a

result, the restrictions on X are:

ReC() > 0 (4.4)

IM(X) > 0 (4.S)

which in turn impose the following behavior for u and Uo:

Re(uo) > 0 Im(uo) > 0 (4.6)

Re(u) > 0 Im(u) > 0 (4.7)

A possible position of the branch cuts governed by these

inequalities is shown in Fig. (4.1).

The integrand in (4.1) has poles whenever either one

of the functions f1 (AEr,h), f2(Xlcr,h) becomes zero. The

zeros of these two functions correspond to surface-wave

modes. Particularly the zeros of fl(XpCr,h) correspond to

TE surface waves and the zeros of f2 (X,crh) to TM surface

waves. In the case of a lossless dielectric, these TE and

TM poles are the roots of the equations uo a ucoth(uh) and

CrUo - -utanh(uh). Furthermore, these poles lie within the

range k, ' Re(X) < k 2 .
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The semi-infinite integration in equation (4.1) is

performed along the real axis and is completed in two steps.

(i) Numerical integration over the interval [0,A]

where A satisfies the relationship coth(A2- k )]
-" 1.

(ii) Combination of numerical and analytical integra-

tion for the evaluation of the tail contribution

which is actually the integration over the path

[a,').

Subsequently, it is concluded that the (m,n)/(iv) element

of the impedance matrix can be split into two parts, viz.,

ZiV Zi(A + ZiV(m (4.8)min mn- mn

where

iv iv 1
iZ ( oA v A (Xcrh;z z )

Zmn) £ {Jo(xp)). . .h)f2 ( d
v-l,2 mn C( 'r 2 Irh)

(4.9)

and

zmn( v-,2 iMn 0fp)} [fi C(A )r'h) ' f 2 ( ' r- h
) dI

(4.10)

4-2. Numerical Integration AE[0.A]

The first part of each element of the generalized

impedance matrix is given by
iv 1A A IV(AEr~h;z I zV )  V

Z'V(A) E - h) 1, j£JO(Xp)
(4.11)
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V1

and is evaluated numerically. The operatOrmn is of the

form

V wI/2* x
L £i" 2dy'Jy(y') fx dXJmx (x) [ dx'Jnx (x')Iimn -w /2 00

1 (P-p 1 ) + 6(P-p 2) 6(P-p 3 ) + 6 (P-04)] +

+ 16(x*R. x ) 6(x,-tx) - 2cosCex)6(x,)•

* [6(P-P 1 ) + 6(-p3)1 (4.12)

where

P f(x+x'+xm'Xn) 2 +(Y-y') 2  (4.13)

P2 - {(X*X'4Xm-Xn) 2,+ (y-y') 21 (4.14)

2 2
P'3  { ('x~xl+Xm'Xn) +(y-y') 21 (4.15)

P4 - {(-x'4x+XmXn) (Y'Y') 2 (4.16)

Jmx(X), Jnx (x') belong to the set of basis functions

which have been used for the application of the moments

method. In the integral of equation (4.11), it has been

found that the space integral operator can make the inte-

grand a slowly varying function of X thereby minimizing

the error of integration. Therefore, for the evaluation of

ivn, the function

mn

is transformed into a rapidly converging series of the form

(Appendix B)

34
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MA Z x20 d 2a

+ B -ix ro d J (Xx+ + J (Ax
X 0A dlxl' 1 °0 m(n+l) 0 mn

+ j 0 (X( mn)))1 (4.18)

where tx is the subsection length (Ix < 0.02Xo), io(XXmn) is

an expression involving Bessel functions and xmn is given by

X = (xM-xn ) (4.19)

For the integration with respect to X, because of the

existence of the poles in the strip k1 i ReCA) < k2 ,

a further division of the integration integral into sub-

intervals takes place as is shown below:

i) 0 < X < kl, the integration with respect to X

is performed numerically using a Gaussian-

Quadrature method with fixed --"nts.

ii) k1 i '< k2 ; for the integration along this inter-

val a singularity extraction technique is used

[371-138] which transforms the integral into a

finite series plus an integral of a slowly vary-

ing function. This finite series gives the con-

tribution of the surface wave modes with the num-

ber of its terms dependent on the thickness of the

dielectric as well as the dielectric constant.

iii) k2  A < A; numerical integration is invoked here

3S



in exactly the same manner as it is performed in the first

sub interval.

4-3. Evaluation of the Tail Contribution

In this case, the integration with respect to X is

extended along the interval [A,,]. The integrals which have

to be computed are given by

Z AiV (Xcrh;zi ,z) -V

(4.20)

where

iv I ~jW1 ~ u z16. f
A iv(A,r h;zi,zV) = 2 * 7 e 0 il [E1(k -k2)+E )e]

1

V

* sinhfu(h-zV + Z 6 i1 6 vl ] f 2(Arh) +

+ [E1 k
2 -E2 ] . [i uocosh(uh)-6i2usinhru(h-zi)]]

*(ECr-I) V1 [sinh(uh) + 6vzsinhlu(h-zv)I] X

(4.21)

with E1 , E2 constants which take the values 1,0. When the

source point and the observation point coincide, p.0, z -

zV and the integral above takes the form,

iv Aiv(Xcrh;z izv)iz |fCrh dX

WM v -1,2 f &i9'Cr~b)ft2 AErpJ Id
(4.22)
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where C is a constant. For the integrand in (4.22), it can

be proved that, when A < ,

Aiv Ae r h ; i V )

fl ( X' Er h ) f  -E' Tr

AuO zizV - -ZVI

E1Ql(Xcrh)e E2Q2 (, C rh)eu"zizV

f 1{Xcr h) • f2(Acr,h)

EIQ1 {lcr h)+E 2Q2 (Xcr h) -a)=(-' = C a<l) (4.23)
fl { X' Er ' h ) ' f 2 c X1E r h )

where Ql(cr h) and Q2 (X,c,,h) are nonsingular functions

of X,,r,h as a consequence of which becomes infinite. In

order to avoid this ZIn(-) difficulty, which arises in the

computation of the diagonal elements of the impedance

matrix, the conducting strips are assumed to have a very

small but finite thickness, t, with the source current

flowing on the bottom surface and the observation points

located on the top surface. As a result, the distance

between source and observation points is prevented from

becoming zero; the minimum value it can take is equal to

the thickness of the strip. Since A has already been

chosen in such a way that

coth[(A2-k k2  h] 1 (4.24)
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equation (4.20)can be approximated as (AppendixC)

1 f() 1 2 e Okiu {J(up)}zmn ~ v-1l,2 Dl (A;-kl) m

*du 0 + D2(A) 2 e -u*v( uV du*

D3 (A)f 2  eu(btL {J(upW) dul

* Error (4.25)

where

1 2A I-2A E1 - 2 1.].66V1

1 2 1(4.26)\1e2 (A) EI I-e(A)[

-4-

+ [E 1 k E2 k (6 i 6 v+6 6i8l ___ +]*

(4.27)

D3 (A) *J[EI(k 2_k2) + EIe e4 (A)6i28v2  + i2v
I 2k I1+e4 (A) i2v

(A) r - PF '6(TTI (4.28)

and 2

01 (A) Z- k1  (4.29)
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Sk2 k2
e 2(A) ( (4.30)

1 2

es(A) - 2__rl_ k (4.31)

k2 _k2

e 4 (A) - 121 (4.32)
2

k2e.A) - (4.33)

2 2r  k2 " k I
e6CA) - 2(1+c ) 0' AC- 4.34)

24

p a pll+e1 (A)] (4.35) *1

2p a P[l+es(A)] (4.36)

t* - b + t[l+2e4(A)] (4.37)

The error made by the approximation in equation (4.25)

depends on A. It has been found that --

Error = 0(A 2 IZ (4.38)

and for this reason A always takes values larger than 102.

Therefore, the approximation considered here is a very good

one since the overall error made in the computation of

the input impedance is of the order of 0.1t. In equation

(4.25), the integrals can be put in the general form,

I -viay V

i .A2.k 2 e  1, {Jo(uiP))du. (i=l,2) (4.39)
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where u i - a can take either one of the posi-

tive values t, t*, 2bs-t. If one interchanges the order of

the operator and the integration, the integral Ii can be

written as

'i f Jo Go ua

mn A{2k ) 0  ()6i

where

geA) = 1 (i =1,2) (4.41)
Zmn ~gD(A) 4n)k~iv

If one substitutes (4.40) into (4.25), ZlVmn) becomes

D,(). : v (A) j(,2 tA ]2 +
mn vul, 2 fa n

£+ 2 (A)n I I -

A /(
Xt/g, (A)) J (t 'i/g2 (A))

v.1,2 D gl( A)  ) D2 (A) e4- "
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* 3()e (2b 5-t)/g2 (A)+ D3(A)(\ le (  XJ(Xp)) dX (4.42)

From equations (4.8), (4.11) and (4.42), it can be seen

that the elements of the impedance matrix can be split

into two other parts so that the evaluation of each is

simplified

,1v Z (A) +Z (4.43)
mn mn

where

jV IA [Biv(rhz , z ) v(A) 0 (XC'Crh; dX

mn V=1,2 fl (AIzr h) .f2(11crJ'h) mn 0p)d

(4.44)

ZiD, 1D(A) 2 V t2l]2V

id~~ mn v12M 1

D 2(A) v() 2 + [b jj *

+ T- U n ( 2 ) (4.45)

and

Biv (XiCr ;z ivz V Aiv C,Cirh;zizV
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i4

)(Xt/gi (A)) -,t/2(
iD)1 (A) e (AT + D2 (A) e

+ D(A) g2(A) (4.46)

The first term on the RHS of equation (4.43) is evaluated

with the technique which was described in Part 4.2 of this

chapter, while for the evaluation of the second term a more

careful treatment is necessary in order to keep the error

of integration within acceptable limits. The operation

OfL on the function + (Eq. 4.40) can be

mn (P g J
written in the final form

wV/ dy

C I (P 2 4 [-]2) j wV/2mn fwv/2

,E asin~kxt) tn (2I * y1  *(l-TXT) *Z

+ OA PO a(4.47)

where a constant, x.l = riT + x -xn and (0, gi-is

a slowly varying function of p. In equation (4.47) all the

remaining integrals are evaluated numerically by using the
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Gaussian Quadrature method of integration and in this

manner the error introduced is of the order ofiv

(io6.z 2
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CHAPTER 5

-NUMERICAL RESULTS FOR SELF AND INPUT

IMPEDANCE OF PRINTED STRIP DIPOLES

S-1. A Printed Strip Dipole Excited by a Microstrip

Transmission Line Embedded in the Dielectric

In this case, the excitation mechanism is provided by

a strip transmission line embedded inside the substrate (see

Figures S.1, 5.2) which couples energy parasitically to the

microstrip dipole. Since the radiation mechanism of a

microstrip dipole is very similar to that of a microstrip

patch [55], the model developed in this dissertation is

applicable to the analysis and design of microstrip elements

which are rectangularly shaped but with a width smaller than

the element length. Reference to Figures 5.1 and 5.2 gives

reinforcement to the assertion that the parameters of the

problem are arbitrary in the development of the model,

including substrate thickness and relative permittivity to

account for previously recognized substrate effects [33) -

[38). In addition, the thickness of the metallic conductors

is included, strip transmission line and microstrip antenna

widths may differ and the effects of the microstrip dipole

overlap and offset with respect to the transmission line on

the current distribution are investigated. If one deter-

sines the current distribution by applying the method of

moments (see Chapter 3), then transmission line theory is

invoked to evaluate at the chosen reference plane, the self

impedance Z. of the microstrip dipole. This leads to a
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design procedure which yields the microstrip dipole length,

poverlap and offset so that a desired input match can be
achieved for a given substrate. In all the results which

are going to be presented below, the operating frequency is

10 GHz.

A. Self-Impedance Evaluation

For the evaluation of the microstrip dipole self-

impedance, transmission line theory is applied and, because

of this, unimodal behavior of the field far from the strip/

dipole coupling region is essential. In order to satisfy

this requirement, the transmission line is kept very close

to the ground plane giving a ration w2/(h-b s) > 2.0.

For the particular geometry considered here, a uni-

modal field is excitei under the transmission line and, as

a result, the amplitude of the current distribution beyond

an appropriate reference plane looks like a standing wave

which is due to TEM waves traveling in opposite directions.

For this reason, the microstrip line is approximsted by an

ideal transmission line of characteristic impedance Zo which

is terminated in an unknown impedance (see Figure 5.3).

This Quasi-TEM mode has a wavenumber B and a standing wave

ratio SWR equal to the average values evaluated from the

original current.

If the origin of x coordinates is taken at the posi-

tion of Zs , then the voltage and current waves on the ideal

transmission line, with respect to this plane of reference,

are given by:
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3

V(x) - Ae jBx + BejBx (5.1)

and

I(x) - 1o[Ae3jsx- Bejox] (5.2)

If one considers the positions Xmax and Xmin of two con-

secutive maxima and minima, equation (5.1) gives

Imax 1 - ej2BXmax -jB(Xmax-xmin-)

m e 5.min

Since the absolute difference between xmax and Xmin is

equal to one-fourth of the wavelength of the guided wave

(xmax-Xmin - Ag/4), then equation (5.3) can be written as

I 1 - B ej 2 xmax -w
Smaxi e (5.4)

min B ejZaxmin

The reflection coefficient r is defined as

r(x) = e= (5.5)

If one considers that

'max e' 3 (5.6)

min

then equation (5.3) gives the following expression for the

reflection coefficient,
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r(o) e - 1_ -J2Xmax (S.7)Y+ T 1S7

From (5.1) and (5.2) an expression for the self impedance

Z. evaluated at the position xo can be written as follows:

Zs (xo ) 1 + r(x0 )
zo  = ( r(x o ) )

If now this plane of reference is considered at the posi-

tion of the first current maximum dmax from the end of the

open circuited transmission line, then the self impedance

measured with respect to this plane is given by

Zs(dmax) 1 + r(dmax )  1 + r(o)e j 2 dmax

Zo  1 - r(dmax)  I j28dmax

Since for the evaluation of r(dmx ), the method of moments

together with transmission line theory has been applied,

equation (5.9) indicates that the evaluated self impedance

depends on the characteristics of the substrate (cr,h) as

well as on the embedding distance of the transmission line,

the overlap, the offset and the length of the dipole.

The fundamental design procedure is now revealed.

One wants to choose, for a given substrate, the right posi-

tion of the dipole so that optimum resonance (in other

words, perfect match) is obtained. The condition for

optimum resonance is characterized by the relation

so



Z~ (d

ZS (dma x ) (.10)
Z - 1(. o

0

which combined with (5.9) gives

r(dmax) - 0 (5.11)

or

r(x) - 0 (5.12)

This'means that one wishes to find the geometry which

perfectly matches the dipole to the transmission line.

B. Dipole Length and Overlap Variation

The self impedance is evaluated using equation (5.9)

as a function of the length Ld of the dipole and the over-

lap K ovp

K 1 t (5.13)

where is the part of the surface Sd 6f the dipole which

is over the transmission line (Fig. 5.1). The real and

the imaginary parts of the normalized self impedance are

plotted (Fig. 5.4) for a substrate thickness h a 0.077",

dielectric constant er a 2.53 and embedding distance

bs a 0.0485". The width of the strips is w - 0.060" and

the thickness t - 0.00025". The length of the dipole is

varying between 0.373" and 0.349" and the overlap takes

values between 38 and 86%. Figure 5.4 implies that as the

overlap becomes larger, the dipole length curves approach
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the origin of the axis, which means that as the dipole

moves to the left from the end of the transmission line,

the coupling weakens and the reflection coefficient on-the

microstrip line approaches its value at open circuit.

However, there exists a particular overlap for which the
z

curve of the dipole lengths goes through the point o * 1;
0

in other words, for the geometry considered above, there is

one value for the overlap and a specific dipole length so

that the dipole is perfectly matched to the transmission

line.

C. Dipole Length and Offset Variation

It is of interest to investigate now the dependence

of the normalized self impedance on the offset and the

dipole length. Again, the real and imaginary parts of the

normalized self impedance are plotted (Figure S.5) for a

substrate thickness h = 0.077", dielectric constant cr =

2.35 and embedding distance b = 0.0485". The width of the
S

strips is w - 0.060", the thickness t - 0.00025" and the

overlap Kovp 50%. The length of the dipole varies

between 0.373" and 0.349" and the offset takes the values

0.00", 0.02", 0.04", and 0.08". From Figure 5.6 one can

see that as the offset becomes larger, the coupling weakens

and .the dipole length curves are shifted to smaller values

for the self impedance. Also, the resonant length of the

dipole, or in other words the dipole length for which the

self impedance becomes real, is a monotonically descending
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of the offset, which means that as the offset changes to

larger values, the dipole self impedance becomes more

capacitive. Again, as happened in the case of the overlap

variation, one can see that there exists a specific offset

which can give optimum resonance if the dipole length is

changed appropriately.

D. Dipole Length and Substrate Thickness Variation

As mentioned before, the normalized self impedance

is also a function of the substrate characteristics and

the position of the transmission line. In order to examine

this dependence, the width, thickness, overlap and the

distance of the transmission line from the ground plane

are kept constant at the values given above, the dielectric

constant becomes equal to 2.53, the dipole length is varied

again between 0.373" and 0.349", and the substrate thick-

ness takes the values 0.0645"1, 0.0765"1, 0.0825"1, and

0.0945". Figure 5.6 indicates that as the substrate thick-

ness takes larger values, the coupling between the dipole

and the transmission line becomes smaller, the dipole

resonant length decays monotonically and the self impedance

for a given dipole length becomes more capacitive. Also,

as happened in the two previous cases of the overlap and

offset variation, there is a unique value for the embedding

distance which combines with the appropriate dipole length

to give a perfect match.

It is also interest4ng to see how the current dis-
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tribution changes as a function of the substrate thickness

h around optimum resonance. Figure 5.7 displays the cur-

rent distribution normalized to the incident current on the

transmission line for h - 0.099" (undercoupled), h-0.093"

(perfectly matched) and h=0.082" (overcoupled). The sub-

strate is duroid (cr * 2.53), the distance of the trans-

mission line to the ground plane is 0.0285" and the length

of the dipole L1 = 0.353". As shown in the figure, the

current on the dipole takes its maximum value when it is

perfectly matched.

E. Comparison with Experimental Results

The theoretical analysis of a printed strip dipole

electromagnetically coupled to an embedded microstrip line

is tested by comparing theoretical results to experimental

ones. Stern and Elliott [43] measured experimentally the

self impedance of strip dipoles with rounded corners

(Figure 5.8) printed on duroid boards (Cr - 2.35) of sub-

strate thickness h=0.077", excited by a microstrip trans-

mission line in the dielectric at a distance from the

ground plane equal to 0.0285". The width of the strips was

w - 0.060" and the thickness t a 0.00025". The self

impedance was measured for different dipole lengths and

its normalized values are shown on a Smith chart (triangles)

in Figure 5.9. The solid line corresponds to the theoreti-

cal results. From Figure S.8 one can see that the experi-
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mental resonant length is about 0.390" while the theoreti-

cal one is 0.379". Therefore, there is a difference of .....

2.75% with approximately 2% resulting from the different

shapes of the dipoles. Those which were studied analytically

h a rectangular shape whereas those measured experi-

mentally had round corners [56].

The difference between the theoretical and experi-

mental values of the self impedance has two attributions:

i) Different shapes of the dipoles

ii) The fact that in the theoretical evaluation

of the current, the hybrid nature of the

modes propagating in the microstrip was

taken into account while for the experi-

ments only an equivalent TEM mode was

measured.

S-2. Strip Dipoles Excited by a Gap Generator

This section of Chapter 5 presents design procedures

for microstrip dipoles printed on or embedded in the

dielectric substrate. The dipoles are center-fed by an in

phase unit voltage delta gap generator. All the dimensions

presented are normalized with respect to the free space

wavelength Xo Due to an assumed time dependency of e
j~ t

inductive reactance is positive in all plots. The dipole

is considered either alone or in the presence of parasitic

dipoles printed or embedded in the dielectric. The

material given here relates the antenna geometry (dipole
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length, substrate thickness, dipole-ground plane distance,

position and length of the parasitics) to antenna charac-

teristics (resonant length and resonant resistance). The

presentation of the numerical results is completed in three

steps: At first, a dipole embedded in the substrate is

considered and its characteristics are discussed in terms

of the embedding distance. After that, this dipole is con-

sidered in the presence of one printed parasiticdipole and

the change in its performance is studied. Finally, the

same dipole is considered in the presence of two parasitics,

one printed on the interface, the other embedded in the

dielectric. Its characteristics are studied in terms of

the relative positions of the parasitics as well as their

overlap.

A. One Dipole Printed or Embedded in the Substrate

One of the most important characteristics of a dipole

is its input impedance (Fig. 5.10). Figures 5.11 and 5.12

show the real and the imaginary parts of the input imped-

ance when the strip dipole is printed on a duroid board

(Cr a 2.45) with substrate thickness h equal to 0.2 Ao and

for different strip widths (w - 0.002Xo , 0.001X 0, 0.01AO).

Figure 5.11 shows that the input resistance around reson-

ance is insensitive to width variation while its value far

from resonance becomes lower as the width increases. The

effect on the resonant length is also very small as Figure

5.2 reveals. However, the input reactance is very sensi-
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tive to changes in the width taking much lower values as

the width becomes larger. From the figures one can con-

clude that the behavior of the input impedance of a printed

strip dipole as the strip width is varied is similar to

that of a free-space wire dipole as its radius is varied.

Figure 5.13 shows the curreit distribution in amplitude

and phase on a strip dipole printed on duroid (cr a 2.45)

with substrate thickness h - 0.2A w M 0.0of

t - 0.0001N o and for L equal to 0.62Xo, 0.347Xo, and

0.248XO

Consider now the dipole shown in Figure 5.10 for

duroid of dielectric constant er - 2.53, substrate thick-

ness h 0.065o , thickness of strip t = 0.0001X o and

width w = 0.05\ o. Figure 5.14 shows how the resonant

length Lr and the resonant resistance Rr vary as a function

of the embedding distance bs . It is interesting to note

that as the strip dipole enters the dielectric substrate

and moves closer to the ground plane, the resonant length

decreases to a minimum value when the dipole is at an

embedding distance equal to the half of the substrate

thickness, and after that increases to a maximum value

when the dipole approaches the ground plane. However,

the behavior of the resonant resistance is different. It

takes its maximum value when the dipole is printed on the

interface and decreases to zero as the dipole enters the

interface and moves close to the ground plane. The reson-
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ant resistance when the dipole is on the interface takes

such a small value because the substrate is thin and the

strip dipole is wide.

B. One Embedded Strip Dipole Excited by a Gap
Generator in the Presence of a Printed Parasitic
Dipole

The dipole of Figure 5.15 is now considered. In

this case, the relative dielectric constant for the sub-

strate is 2.35, the substrate thickness h is equal to

0.06SXo, the strip thicknesses are tI - t2 - 0.0001, the

strip widths are wI - w = 0.05A ° and the overlap is 23%.
2 0

As shown in Figure 5.16, the resonant length of the

excited dipole as a function of the embedding distance

does not go through a minimum as happened in the .case of

the single dipole but decreases monotonically as the

exciter approaches the ground plane. The behavior of the

resonant resistance is not that much different. For values

of bs smaller than half of the substrate thickness, it

oscillates around a value of 15 ohms and for bs larger

than h/2 it decreases monotonically to zero as the exciter

goes very close to the ground plane. It is interesting

to compare the variation of the resonant length and

resonant resistance as functions of the embedding distance

for -the cases of the single dipole and the dipole in the

presence of a parasite (Figures 5.14, 5.16). One can

observe that the parasitic not only changes the behavior

of the resonant length and resonant resistance, but also
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makes their values larger. This means that the band-

width and the efficiency of the antenna are increased. It

is also interesting to see how the resonant length and

resonant resistance change as functions of the substrate

thickness when the distance of the exciter from the ground

plane is held constant. In Figures 5.17 and 5.18, the

resonant length and resonant resistance are shown as

functions of h when Cr a 2.35, w 1 I w 2 - O.OSXo, t1  t2 -

O.O001Xo and h-bs M MO, O.2X ° respectively. In the

first of these two figures, the substrate thickness takes

values between 0.15X o to 0.25X ° while in the second one h

varies between 0.065) o and 0.075X o. Except for the differ-

ence in values the behavior of Lr, Rr is the same in both

cases. From Figures 5.17 and 5.18 one can see that as the

parasitic dipole moves to greater distances from the exciter

the coupling weakens and the resonant length and resonant

resistance of the embedded dipole asymptotically tend, as one

would expect to the values they have in the case of the

single excited dipole (Figure 5.14).

C. An Embedded Strip Dipole Excited by a Gap
Generator in the Presence of Two Parasitic
DipolIes

The geometry for this antenna is shown in Figure 5.19.

For this arrangement, with cr - 2.35, h =0.065S o, bs -

0.041X o t 1 - t 2 = 0.0001) (2) K(3) - 8Ow 1  w 2'l t t2a000XKovp ovp 2

O.05oA, the real and imaginary parts of the input impedance

for two different values of 8 (distance of the embedded
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parasitic from the interface) are given in Figures 5.20 and

5.21. From these two figures, one can see that, as the - -"

parasitic approaches the exciter, the resonance occurs at

longer lengths of the excited dipole, while the bandwidth

decreases and the resonant resistance increases to values -

above 100 ohms. The resonant length and resonant resistance

as functions of the embedding distance 6 are shown in

Figure 5.22 for two different values of the overlap

(SO%, 80%).
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CHAPTER 6

RADIATION PATTERN OF PRINTED STRIP DIPOLES

6-1. Formulation of the Equations for the Far-Zone Field

Radiation pattern or far zone fields can be obtained

by using a rigorous numerical technique as described in

Chapter 2. The numerical technique, although valid for all

distances, is quite expensive for the far zone computations.

In the calculation of the radiation pattern, only the far

zone fields above the air-dielectric interface are required.

Hence, the conventional stationary phase method 157]-1581

can be used. The details of the method are covered in

Appendix D. When a printed strip dipole is excited either

by a gap generator or by a microstrip line embedded in

the substrate with h - bs << Xo (see Figure 6.1), the far-

zone field is due totally to the radiation from the dipole.

Under this assumption, the far-zone electric field is given

by -jk1P

R sRa As (6.1)

In equation (6.1) Ra is a scalar (called the antenna shape

factor) and is given by

Ra -20csk1L x sncs Z- cos(ki x

SJ 0 k sin(kx) - - sin ecos

Jos(kl7- Ssio) - s(k 01

so
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Printed Strip Dipole Excited by a Microstrip
Transmission Line Embedded in the Dielectric
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jk 0 ~sin~sine jk a sinfcos
e IIe11

n nejk1 (nI,)sinecos0 (6.2)

where Jis the zeroth order Bessel function and S(We ,e610

is the integral

SCWe 1e~ Je cos~k1  e sin~sinfcosa]da
0

(6.3)

Also, Is is a vector called the substrate factor and has the

form

Sis OR R (6.4)

PO where

Rse -C OSO f(c.,,h,e)[cose (cr-I)sin~tan9A~cr~h,8))

(6.5)

R = sino f(cT. h'e) (6.6)

and

CE r ,h,e) Icose
(6.7)

A(cr,h8e) c

[er cose4+ J/ rsi tan(k1Aer-sinzeO )

(6.8)
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6-2. Effect of Substrate Thickness and Permittivity on

the Radiation Pattern

An investigation of the expressions given for the far-

zone electric field indicates that the effect of the sub-

strate properties on the radiation pattern is controlled by

the factors O(e r ,h,e) and A(Er~h~e). Furthermore, it is

verified that *(c r h,O) is a result of the substrate guided

TE modes, while A( r ,h,e) is due to the TM modes. A

thorough analysis of 0 indicates that it determines the

position of the nulls and the principal as well1 as secondary

maxima of the pattern for e < ~.If one considers the

radiation pattern of a strip dipole at resonance, then the

number of the lobes and the position of the nulls are

totally controlled by the substrate.

A. Number of Lobes

The number of lobes in the radiation pattern can be

determined from the equation

2 /c-- [/ET h .+ N + a (6.9)

where the brackets indicate the integer value of, N is an

integer, and a is an arbitrary real positive number less

than one. From equation (6.7), the following cases can be

identified:

1) If N - 0, there exists a single lobe with

maximum at 0 - 0.

2) If N >0 and a >0, there exist 2N + 1 lobes

with one of the maxima at 0-s-0.
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3) If N >0 and a O+, there exist 2N lobes

with a null at 6= 0.

B. Positions of Nulls (N>O)

From equation (6.9) one can derive the relation

[2 o]-[2r/;T 0..] + N (6.10)

If it is assumed that

then the position of the nth pair of nulls is given by

e n 1,2 i ±sin C (6.11)

where K = m~n and n 1 1,2,...,N.

The dependence of the f and A-plane normalized radia-

tion power patterns on or and h can now be investigated.

For a duroid substrate with Er - 2.35 and for a substrate

thickness of h - 0.2A 0, equation (6.9) is satisfied for N=O

and a - 0.613 and therefore the radiation pattern consists

of a single lobe as shown in Figure 6.2a. In light of

(6.7), it can be verified that for h - 0.2X o , 0.97SX o and

1.05A 0the f and A plane normalized power patterns will have

one, two, and three lobes respectively, as shown in Figures

6.2b, 6.3a, 6.3b.

If the substrate thickness h is fixed, e.g., at

h - 0.i016X o , then the t and f-plane normalized power pat-

terns are shown in Figures 6.4a, 6.4b and 6.5a for or a 2,

84

. .. . . . . . . .. IIIm . .. . . . . . . . . ... . . .ima | .. .. • 1



II

CC

00 tq
"CL

M us

II I



00

oons0
.I0

'CL

010

ogm

.CC~
~ *06

10P-
000 -

is '7oo 0

86-



00

vm C

01

ooCo
IIL

a-a

cmm
c

0=0

%LIP I
-I cw 0

c-

C8



I]

.0 0

S o-

o i S

100

00.

.0

S...0

00 w

CI

0

0 T

BeU m .~ I



10, 35 respectively. With increasing Cr9 we observe that

the PCD directivity is decreased because more energy is

radiated close to 6 direction along the length of the

antenna as the number of modes guided in the substrate

increases. It is further observed in Figure 6.5b that

when Cr a 25 and h - 0.10106A , there exist three lobes and

according to (6.11) the nulls are 0 - t62.111. This last

case has uncovered an interesting phenomenon which is the

radiation at angles e very close to . This will be

described in the next section.

6-3. Radiation along the Horizon

As mentioned above, an interesting phenomenon is the

existence of nonzero radiation close to the horizon in

either the A or the I plane when the electrical thickness of

the substrate satisfies specific criteria. In particular,

A-plane radiation along the horizon is seen to occur when

a TE surface mode turns on in the substrate and t-plane

radiation close to the horizon is seen to occur when a TM

mode is excited and the substrate can support more than one

"ibe. This phenomenon is explained analytically by the

coincidence of a pole and a branch point in a Sommerfeld-

type integration.

In order to highlight the criteria under which radia-

tion along the horizon takes place, the case of the dipole

of Figure 6.1 will be considered in detail. If one studies

equations (6.1) - (6.8), it can be seen that the f-and t-

.- "9
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r

plane radiated fields are given by

Eef(1plane) e =-T Ra(=O) tCer,h,6)

[cose + (cr-l) sine A(cr'h,e (6.12)

and 
_ok e

-jk R

E (A-plane) a e R) (6.13)

From equations (6.12) and (6.13), one can obtain

jklR

ekR
E a

lrn j Cos (6.14)

- 7 cr.Sine2 cot(k ICr.sin 2 h)

In words, the radiated field in the H-plane tends to zero

at the horizon (8-w/2) unless the denominator also tends to

zero as .w/2. When cot(k /t-T h) is equal to zero then,

27r/Ec7T h- a .Zm +.1) j(6.15)
0

0

Equation (6.16) is simply the condition for a TE surface

wave mode turning on. Equations (6.14) and (6.16) imply

that there is nonzero radiation at the horizon in the i-

plane pattern when a TE surface wave mode turns on. For the

2-plane pattern one finds that
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cos[i Eeoc  = ekl Ra(*= 0, e= ) (Cr-1) lim osel =

(6.17)

Therefore, at e = the radiation in the E-plane is always _._

zero. However, it has been observed that for e - - b,

where b is a very small angle, the radiation is nonzero when

Vr= h .m M U 192, ... (6.18)
r X

0

and when the substrate can support more than one lobe, i.e.,

hT [2rc X- + a (6.19)

Equation (6.18) combined with (6.19) gives

'ETT =I- m=1,2,... (6.20)
0

Equations (6.16) and (6.20) provide a set of curves (see

Figure 6.6) which one can use in order to choose the right

substrate so that the dipole radiates close to the horizon

either in the I-plane or in the A-plane. Figure 6.7 shows

the H-plane pattern of a strip dipole at resonance printed

on a substrate with er a 2.1 and h - 0.238X0 and Figure 6.8

shows the i-plane pattern of the same dipole printed on a

substrate board with er - 2.286 and h - 0.661400. Also,

Figure 6.9 shows the E-plane pattern when Cr - 4 (Quartz)

and h *0.285X
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Figure 6.6

Dielectric Constant vs. Substrate Thickness for
TE and TM wave Contribution to the H and E

-plane Radiation Patterns
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Figure 6.7

H -plane Radiation Pattern of a Printed Strip Dipole

with 9.42.1, h = 0.238 x. and wat=O.0001 A.
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Figure 6.8

H - plane Radiation Pattern of a Printed Strip Dipole
with e,=2 .2 8 6 , huO.661A%. and watO.OOO1.
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Figure 6.9

E -plane Radiation Pattern of a Printed Strip Dipole
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APPENDIX A

FORMULATION OF POCKLINGTON'S INTEGRAL EQUATION

(2.35) IN THE FORM GIVEN BY (2.37)

In Chapter 2 it was shown that the integral equation

for the electric field is given by

i () V w v / 2  L  V
E x  =T1 dy f dx '

v1,2 f-wV /2 0

2 ;2 ,i

[k2i a2 Fx _2 F zx][OF + -- 7 + _ cy~ A.1)

If one considers the relationship

aF1  - - (A.2)

ax

then equation (A.1) can be written as

i.wV/2 rL

v-1,2 Jwv/2 dy'I dx'

2kFi + ( i - J cX~,yl,z V
IFVxx + LV- z  V

(A. 3)

From equation (A.2) the function Fi is given by
VZ

F ax Fi = '- F'i (A. 4)FVz T VZi J T vzi "

By substituting (2.28) into (A.4) one can obtain

F (4) 2 )° -Lx cost

a~fJP zi a sinhtu(h-z V+z V al
F101
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coslu(h-z 1*z16ii)]3 dX

.2 0 00 u
2J7, cr'1 fdx COO$3J1C)p)e

3. 0

[6i 1u0cosh~uh) - di2 usinh[u(h-z)J

[6, 1sinhuh) + 6v2 sirhu(hz )1] 2 A5

f2()Lcr ,h)

From the relations

p - [(x-X') 2 + (-t) 2J (A.6)

and

COsO X-X (A.7)

it is determined that

dP = Cost (A.8)

and
dJ 0(Ap) 1 dJ0 (XP) dx'

SdJ 0 (xp) -

-j -J(Ap) (A. 9)

A substitution of (A.8) and (A.9) into (A.S) yields

i 4. 2( -0)(r-~ r .X~eu
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[6i 1u 0coshuh - 6i2usiflhiu(h-z)1]

f(X,c T ~h)

1 6 s inh uh) *6v.sin*(u (h -zVj)]]AA (
VI~~( ,E dX (A10
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APPENDIX B

EVALUATION OF THE SPACE INTEGRALS IN THE INTERVAL

Ac[O,A]

As shown in Chapter 4, the elements of the generalized

impedance matrix are given by

ivv

z ivVA=, r h z zV X ) d

mn vl,2 l('X cr~ )'f2 X~crhinn 0

£ {3t~p)inn(B.1)

[siXn 6(kL v) dy' jV(yi)
mn Isn~kx-w /2 y

[E, f'x dxf'x dx' sinlk(Ex- x)) sinlke(L(-x')1

16(p-P1 ) + 6(P-P 2 )+6(P-P 3 ) + 6(P~-P4)] +

+ E2  J X dx sinjI(t-x)j [6(x'+ l~ * + (x'- I ) -

-2cos(1et X)6(x')] . [6(P-P 1 )+6-3) * J0 (AP)

(B.2)

with p1,P2,P3,P4 given by equations (4.13)-o-(4.16) and p

given by

p - {(x-x'4x m-x n) 2 + (Yy.y)Z2 (B.3)

The Bessel function in equation (B.2), because of (B.3), can

-- be written as
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J0O~xp) * J0([ 2 (X-x'~x.x n) 2 + A 2 (Y-YZ) 2

1 ff e 3AX-lxm -xn)cs cos(X(y-y')sine)de
0

(B.4)

If one substitutes (B.4) into (B.2) and interchanges the

order of integration, the multiple space integrals

mn{J0 (A).c) take the form

mn [i~~

[E1 I I dxf I dx' ikkxx]nkk-

te jx(x~x)C0SO+ e jx(x'x')cose + eix(Cx+x')cose,

+ ejx(x-x)cosei + E 2 [eXoe ' -X -s

-2cosCIktx)] fJtX dx sinj~e(it-x)1 le~ )xxcose+

+ -jxcosei f, dy'Jv(y')cos(X(y-y')sinO)

Equation (B.5), with the use of the equality

Zcosa a ej + (B.6)

can give

74 WX(x )cose
£V (. (AW) -6(- 4 d6 e m
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iv
/2 dy' jV(y') cos(X(y-y')sine)

Lwv/2  y

xdx sin[(k -X)JcosCxxcose)

fEl fox dx' sin[h(Zx-x')]cos(Xx'cose)

+ E 2 cos(Ix cose) - cosltx)I (B.7)

In equation (B.7) if one applies straightforward integra-

tion, interchanges the order of integration and assumes that

wv / 2  ,x
dy'Jy(y')Jo ( Xmn) - Io(AX) (B.8)

with xmn I IXm-XnI and pmn a {(xm-Xn) 2 + (.y,) 2, then

equation (B.7) can be written as

£ mn ~~oOD E o~I 20~7J 2aui)

x 2o 2 a

o ,m(n~l)*0'/'xo d °xj

+ jo( Xm(n.1))] (B.9)

where. A2o, Ba are constant coefficients.
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APPENDIX C

FORMULATION OF THE INTEGRAL (4.20) FOR THE TAIL

CONTRIBUTION

If we choose A in such a way that

coth[(A 2 _k 2) h]) ; 1 (C.1)

then in the integral

with mA mIf Arh)f(crb n0(C.2)

Aiv (,C i zv [(k2 e2)Ellj X h iv
A ( r~~h;z z)-[E(-e 2  vxx T ;z 02)

+ rE Ik 2 _E2 ~ k J (X,Er,b;z 1,z V (C.3)
vz

and

Xr ,h;z ~ zV 2 - e -uz6Ii

0-6 i2 8v26 i2 6 v !UCosh(uz V) + u0 sinh(uzV ll

*sinhfu~h-zV + Z 6 il'5vlV01 f2()XlErlh))X (C.4)

(2 uco -i
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the functions fl(A,Erh), f2(lcrh) can be approximated by

fi( pcrh) = sinh(uh)(uo+u) (C.6)

and

f2 
(X ' r 'h) * sinh(uh)(crUo+u) (C.7)

In equations (C.2) * (C.5), the z-coordinate for the source

currents (zV) and observation points (z i ) is given by

-b st i-2 {-b s v 1

If one substitutes (C.6) and (C.7) into (C.4), then the

function (x ,crh;z ,zv ) can be written as

vxx 4,r1 lr

Vxx (  r 0 '  - 1 I U 0 + uo

-u t -ub
+ ( 6  + e e +

l (1v2 + 6 i26vl u uo
1 + U

U

+ 6. -u 2bs-t
i2 'v2 u eUt I r-h)

U

(C.9)i i

Similarly, the function (ACr,h;z ,zv) can be approxi-

mated by

1 2
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6j ,1  rUO : Uou 0 tr -u

(6ii v2 6i26Vuii) e e

6  a e' u(2bs-t)( 1 Er (C.10)... u 
} uClO

In equations (C.9) and (C.1O) uo,u are functions of X given

by

u 2 - ki) (C.11)

u= (x,2 _ k ) (C.12)

U
Because of (C.1O) and (C.11), the functions 1 + 0

1+r u0  1 in (C.9) can be written as"U-O y Ur u
0  r u-

ii 1 + I__. {I -1 e e()}1(.
U

1 +_o {1 + e4) (C.14)

1 -1

Cr+ ! u= { - e3 (A)} " 1r uo  Cr + I 3(X)))

1 + t {1 + e 6 ) (C.16)rr + (C.1(

where k
oe2(X,) A_ z -k2  (C.17)

1
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o < e 3 (,) 1 Z• 2 1 (C.18)

O ( ) 1 2 1 (C. 19)

-~2 A

k2 "k
0 < e4(),). A_ - k C.

21
2cr  k2-k 1

0 < e r 2 (C.20)

Also, in equations (C.9) and (C.1O), the function
e" Cot * ubs) can be approximated by

e

" (Uot + ubs) -ut* (C.21)

where

t* - b s + t[l+2e 4 ())] (C.22)

If one substitutes (C.13) - (C.16) and (C.21) into (C.9) and

(C.1O), equation (C.2) takes the form

iv 3 I(Ae-u 2

zmn(4) r"k• v-1,2 k1A2-k2) e "

Z v Jo C)p) }du +D 2  •u
mn 0o (A2.k) 2 (1)e

-uZb -t)
'e {o (W.)1 du + D3 CX)e 5

mn f(A k2)

Oe J (jox)) du(C.23)
an
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where

D A jI El(k2 _1t2) .Ez1E + lvi I* 2 6 ~i

1-e 2 (X) Ell 6 iv

(1-42(A) - r-1 1-e(A

(C. 24)

D I[Ei(k2_]2) +~ E It]

6iv 2+Si26Vi+(l~e4 (X)) S i2 6 v2

I + e4 (X)

+ [E 1 k2_ E 1.(6 ii6v+ 6)

24. 1. (C.25)
r6

D3(X) + -[ 1 k~I 2  EIE) e4(X)zz ~ i2 v2

(I~e(x) +C r i~e 4 X)

From all the equations above one can conclude that

1D1 (X)-D 1CA)lI tD1 (m)-D1 (A)i O(A )

(C.27)

Therefore, equation (C.25) can be written as

Z;() (M D., D() : 2 2 heut0 L J~o))u

4skV wl,2 111M



SD2 (A) k eut (up du
(A) 2 1

2 fA2 - k 2) m=n { o u  d

-u (2b-t) v

J(A~IC) e to {J (up*))du
D3 (A) fA2.k2) en 0 2J(~)d

0 (A-2 Ziv(_)) (C.28)

where

p(1 + el(A)) (C.29)

and

p (1+ e$(A)) (C.30)
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APPENDIX D

.AR-ZONE ELECTRIC FIELD OF A PRINTED STRIP DIPOLE

The far-field due to a printed strip dipole (see

Figure 6.1) is given by

2
E. k1 cosecosofx - sineII z] (D.1)

and

E4  k 2-sin, xJ (D.2)

where

lix - 0 (L- . i 1 jw/2+b 1 dy' J(x'.,y')
P4irk2 -w/2sb1

+C AeH 2) sinh(uh) XdX (D.3)

WTfi(ACrdh)

and

z"" w- (1- r)COSO L+aIdx W/2+bldy 'l

1r fa1w2+b 1

+CD H(2) Xp -uo z0
• J(x',y'2)f 'J _ e

sinh(uh) cosh (uh) 2d (D.4)rl(xcrlh) . t2 tX,Erh) 2X D4

In equation (D.3) and (D.4), J(x',y') is the current

density on the strip dipole
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=2we 1' J (X' )  (D.5S)

2e

with J nx(x) given by equation (3.21) and fl(",cr h),

f2 (,tr,h) given by equations (2.31), (2.32). If the sub-

stitutions X a kIsina, z - rcose, p a rsine are introduced

(where r,e,* describe the far-field 
in spherical coordin-

ates) together with the large argument 
asymptotic expansions

for H(2)(p), H(2)(A
p), Equations (D.3) and (D.4) can be

written as

-- o . fLealdx, Jw/2+bl

X i a I  -w/2+b 1

f(Cr,ha)e-jrk1 cos(- da (D.6)

* J(x',y') f g(cr,ha) -jrk 1cos(8-a) da

(D.7)

where."w(ere..a ) . j sinacosa sin(k 1/r- sin2 a h)

f ( C 7 h ~ a ) j - - -T , a , c r b -
flI ('r'h)

(D.8)
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and

g(C,ha) = sin acosa _ I.

sinesina fl(aler 'h)

cosk1 /Ic; r: sina h)

f2(acrh)

The integrals with respect to a in equations (D.6) and (D.7)

have a stationary point at a - e. Therefore, one can apply

the stationary phase technique for the evaluation of these

integrals and nx , Rz are given by

j oW- (L+aI fw/2+b

a--r dx' dy'J(x',y')l 7 a1 "-w/2+b
1

. +W -jrklCOS CO-a)

f(er,h,e) f e da (D.1O)

-z  T jwpo "1Er)cosf lf dxI 2  dy'

in^I aI  -w/2+b 1

+-.-jrk 1COS (O-a)
• 3(x",) g(Er,h,6) e da (D.1II)

1 1
If the substitutions r - R-x'sinecosO-y'sin~sin8, then

the stationary phase method yields (D.12)

I d 0 e k R #(Crh,e) • I (D.13

Hz .J° kR Ctr-')cos~tane O(Erhe)

A(cr,h,e).I (D.14)
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1~rh6 cose

wherecsej/ *(:rh en1 -1 e cot(k /- 7 in e h)I

* ~A(crph~e) Iccsose~La~% ~ O)

r (D.16)

and 2 fLa1 jk 1x'sinecoso wZb 1 jk~y'sin~sine

A I = -~J dx' e Jdy' e
TWe al -w/2.b 1

N

g After straightforward integration the integral I takes the

form

clos(k L sincos>)cos(ktx~

Wsin~kLx) 1- sincos2

S IJO(kl we sin~sine)- .1 S(w ,9,*

jk b sin~sin6 jk a sinecos$

n Iejkl(ntx)sin~cos 
D.8

here to#) Co (W/W ) o[k we sin~sin~cos do

S~~8* foo (D19
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From all the above, one can conclude that
-jklR

where

Ra j 60 I (D.21)

and

-eRse * fRs (D.22)

with

Rse  -Cos* f(cr,h,e)[cose (Cr-l)sinetane

SA(cr ,h,e) ) (D.23)

and

Rs sin* 0(cr ,h,e) (D.24)
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